Ni-CaO Combined Sorbent Catalyst Materials usage for Sorption Enhanced Steam Methane Reforming

A. DI GIULIANO1,2, J. GIRR1, C. COURSON1, A. KIENNEMANN1, R. MASSACESI2, K. GALLUCCI2

1University of Strasbourg, ICPEES (ECPM), France
2University of L’Aquila, DIIIIE, Italy
Contents

1. Sorption Enhanced Steam Methane Reforming (SE-SMR)
2. Combined Sorbent-Catalyst Materials (CSCM)
3. CSCM synthesis method
4. CSCM characterization
5. SMR and SE-SMR tests
6. Conclusions
1. SE-SMR

SORPTION ENHANCED – STEAM METHANE REFORMING (SE-SMR)

\[(T = 650 \, ^\circ \text{C} \; ; \; P = 1 \, \text{atm})\]

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equation</th>
<th>Δ(H^0_{298 , K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Methane Reforming (SMR)</td>
<td>(\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2)</td>
<td>+206.2 \text{kJ/mol}</td>
</tr>
<tr>
<td>Water Gas Shift (WGS)</td>
<td>(\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2)</td>
<td>-41.2 \text{kJ/mol}</td>
</tr>
<tr>
<td>Carbonation</td>
<td>(\text{CaO}_{(s)} + \text{CO}_2 \rightarrow \text{CaCO}3{(s)})</td>
<td>-178.2 \text{kJ/mol}</td>
</tr>
</tbody>
</table>

Calcium Looping

- **Regenerated solid**
- **Solid saturated by CO\(_2\)**

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equation</th>
<th>Δ(H^0_{298 , K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcination</td>
<td>(\text{CaCO}3{(s)} \rightarrow \text{CaO}_{(s)} + \text{CO}_2)</td>
<td>+178.2 \text{kJ/mol}</td>
</tr>
</tbody>
</table>

Regeneration

\[(T = 800 - 900 \, ^\circ \text{C} \; ; \; P = 1 \, \text{atm})\]

2. CSCM

\[\text{CO}_2 \text{ SORBENT} + \text{SMR CATALYST} = \text{COMBINED SORBENT-CATALYST MATERIAL (CSCM)} \]

- Support
- CaO - binder

3. CSCM synthesis methods

1) WET MIXING[4,5]

MAYENITE OR CAO-MAYENITE

- Calcination of Ca(CH$_3$COO)$_2$ to CaO (4h ; 750 °C)

- CaO + Al(NO$_3$)$_3$·9H$_2$O
 - Stirring in distilled water (70 °C ; 1h)

- Drying (12h ; 120 °C)

- Calcination 1 (4h ; 750 °C)

- Hydratation + Drying (12h ; 120 °C)

- Calcination 2 (1.5h ; 900 °C)

2) WET IMPREGNATION[6,7]

NI-MAYENITE OR NI-CAO-MAYENITE

- Mayenite or CaO-Mayenite + Ni(CH$_3$COO)$_2$·4H$_2$O or Ni(NO$_3$)$_2$·6H$_2$O
 - Stirring in distilled water (70 °C ; 1h)

- Drying (12h ; 120 °C)

- Calcination (4h ; 900 °C)

[4] Z. Li et al, Energy & Fuels 19, 2005, 1447-1452
[5] I. Zamboni et al. PREPA11, 33 (2014) 10–11
[6] A. D’Orazio et al, Int. J. Hydr. En. 2013, 38, 13282–13292
[7] I. Zamboni, Ph.D. thesis, ICPEES 2013
4. CSCM Characterization

- **XRD** (X-Ray Diffraction):
 - Crystalline phases detection

- **TPR** (Temperature Programmed Reduction):
 - Reducibility by H_2

- **BET** method:
 - Specific surface

- **TGA** (Thermo-Gravimetric Analysis):
 - Multiple CO_2-Sorption/Desorption cycles

- **SEM** (Scanning Electron Microscope):
 - Morphology
XRD: Effect of Wet Impregnation

Wet Impregnation with both Ni-Acetate and Ni-Nitrate succeed in adding Nickel
TPR: Effect of CaO fraction (1)

CaO0Ni(Ac)3 and CaO15Ni(Ac)3 have main reduction peaks beyond 800 °C (2);
CaO30Ni(Ac)3 and CaO45Ni(Ac)3 have their main peak at around 550 °C (1)
TPR: Effect of CaO fraction (2)

CaO0Ni(N)3 and CaO15Ni(N)3 have main reduction peaks beyond 800 °C (2);
CaO30Ni(N)3 and CaO45Ni(N)3 have their main peak at around 550 °C (1)
TPR: Effect of CaO fraction (3)

CaO0Ni(N)10 has a large main reduction peak at 880 °C (2); CaO30Ni(N)10 and CaO54Ni(N)10 have their peaks between 400 - 700 °C (1)
XRD: Effect of TPR (1)
For Impregnated mayenite the only modification after TPR in crystalline phases is NiO reduction to Ni
XRD: Effect of TPR (2)

For impregnated supported sorbents, the only modification after TPR in crystalline phases is NiO reduction to Ni.
BET method: Effect of Wet Impregnation

Wet impregnation improves specific surface of CSCM for CaO fraction in the originating sorbent < 15 %\(_w\), and makes the opposite for CaO fraction > 30 %\(_w\).
TGA: CO₂ sorption/desorption cycles (1)

Both supported sorbents and dolomite have a decrease in CO₂ sorption capacity, but after the 15th cycle they have a stabilization.
TGA: CO$_2$ sorption/desorption cycles (2)

CSCM deriving from CaO30 have a decrease in sorption capacity in comparison to their parent sorbent. Wet impregnation with Ni-acetate gives the biggest decrease.
TGA: CO\textsubscript{2} sorption/desorption cycles (3)
CSCM deriving from CaO54 have a decrease in sorption capacity in comparison to their parent sorbent.
XRD: Effect of TGA

Materials are extracted after last CO₂ capture: CaCO₃ is detected, together with residual CaO
SEM: Morphology

All materials from CaO54 show a granular structure, with grains in an order of magnitude within the range 100 nm – 1 µm. This morphology doesn’t change after impregnation or after TGA cycles. The same happens for CaO50.
5. SMR andr SE-SMR Tests

Pre-reduction:
- 10 °C/min until 900 °C
- 900 °C for 1 h
- 10.2 Nml/min Ar
- 2 Nml/min N₂
- 2.8 Nml/min H₂

Reforming:
- 650 °C (constant)
- 10 Nml/min Ar
- 2 Nml/min N₂
- 2 Nml/min CH₄
- Steam/C molar = 3

Fixed bed
- 200 mg or 500 mg
- d_p = 100 – 125 μm ; P = 1 atm
SMR tests (Ni-mayenite catalysts) (1):

Ni-mayenite produced by Wet Impregnation with Ni-nitrate performed SMR tests. For each material, the same sample performed SMR 1 and then SMR 2, just separated by cooling at room temperature under inert stream.

SMR 1: reforming starts at 850 °C; after one hour temperature is decreased to 750 °C; after another hour temperature is decreased to 650 °C

SMR 2: reforming starts directly at 650 °C
SMR tests (Ni-mayenite catalysts) (2):

CH$_4$ conversions (χ_{CH4}) are influenced by the quantity on Ni available for the same rate of CH$_4$ fed, and by temperature.

<table>
<thead>
<tr>
<th>Material</th>
<th>WHSV</th>
<th>Ni</th>
<th>χ_{CH4}, SMR1</th>
<th>χ_{CH4}, SMR2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N$_I$CH$_4$ h$^{-1}$ g$^{-1}$ cat</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>CaO0Ni(N)10</td>
<td>0.245</td>
<td>10</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>CaO0Ni(N)6</td>
<td>0.240</td>
<td>6</td>
<td>100.0</td>
<td>99.6</td>
</tr>
<tr>
<td>CaO0Ni(N)4.5</td>
<td>0.239</td>
<td>4.5</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>CaO0Ni(N)3</td>
<td>0.239</td>
<td>3</td>
<td>100.0</td>
<td>99.5</td>
</tr>
<tr>
<td>CaO0Ni(N)3</td>
<td>0.545</td>
<td>3</td>
<td>100.0</td>
<td>99.0</td>
</tr>
</tbody>
</table>
SE-SMR tests (CSCM) (1):

CaO-sorbent with 54 \%_w of free CaO was impregnated with Ni-nitrate. Resulting CSCM with 3 \%_w of Ni cannot stably catalyze reforming, while 10 \%_w of Ni made possible to observe SE-SMR and SMR after sorbent saturation.
SE-SMR tests (CSCM) (2):
CaO-sorbent with 30 %w of free CaO was impregnated with Ni-nitrate. Resulting CSCM with 3 %w of Ni cannot stably catalyze reforming, while 10 %w of Ni made possible to observe SE-SMR and SMR after sorbent saturation.
SE-SMR tests (CSCM) (3):
CaO-sorbent with 15 %\textsubscript{w} of free CaO was impregnated with Ni-nitrate. Resulting CSCM with 3 %\textsubscript{w} of Ni made possible to observe SE-SMR and SMR after sorbent saturation, having a trend similar to CaO30Ni(N)10.
SMR tests (CSCM) (4):
In CSCM from sorbents with 30 %\(_w\) of free CaO or more, \(\chi_{CH4}\) and catalysis stability are influenced by available Ni, for the same rate of CH\(_4\) fed. Decreasing free CaO to 15 %\(_w\) makes possible to catalyze SE-SMR with 3 %\(_w\) of Ni.
6. Conclusions

- XRD shows that **Wet mixing and Wet impregnation are effective** in producing CaO-mayenite sorbents, Ni-mayenite catalysts and Ni-CaO-mayenite CSCM.

- TPR and XRD reveal that the **only crystalline phase modification (in reducing atmosphere)** is NiO reduction to Ni and that **this reaction is influenced by CaO fraction**.

- BET method shows that **Wet impregnation improves specific surface of CSCM for CaO fraction in the originating sorbent < 15 %_w and makes the opposite for CaO fraction > 30 %_w**.

- Multicycle Ca-looping performed in TGA show a **decrease in CO₂ sorption capacity of CaO-mayenite and Ni-CaO-mayenite in first 15 cycles; after that stabilization at acceptable values occurs**.

- Reactivity tests on microreactor scale show that:
 - Ni-mayenite with different loads of Ni (from 10 %_w to 3 %_w) can catalyze successfully SMR.
 - Ni-CaO-mayenite CSCM can perform SE-SMR.
 - **For Ni-impregnated sorbents with 30 %_w of free CaO of more, a 3 %_w Ni load is not sufficient to catalyze SE-SMR and SMR, while a 10 %w Ni load is**.
 - For Ni-impregnated sobent with 15 %_w of free CaO, a 3 %_w Ni load is sufficient to catalyze SE-SMR and SMR.
Thanks for your attention